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,5 1. Preliminaries and notations.

Let E be a real separable Banach space with norm 11" and Borel a-field

S. Let P(E) be the set of all probability measures on 6 which, with the

convolution "*" and the weak convergence topology, becomes a topoloaical

semigroup. By vun => V we denote the weak convergence of V n to v as n- o, for

n' 0 'r P(E). A i c P(E) is said to be infinitely divisible if for every

integer n > 2 there is vn c P(E) such that un = v. The class ID(E) of all

infinitely divisible measures on E is a closed subsemigroup of P(E). Further-

more, each v 6 ID(E) is uniquely determined by the triplet: a vector a E E, a

Gaussian covariance operator R and a Levy measure M, cf. Araujo and Gine (1980).

In this case we write vI = La,R,M] note that Araujo and Gine (1980) use the

notation: v = 6(a)*y*ciPois(M), where y is a symmetric Gaussian measure with

* . the covariance operator R.

Let Q be a fixed bounded linear operator on E such that lim exp(-tO) = 0

in the operator topology. It is easy to see that 0 is an isomorphism on F.

to
Indeed, since the function t - Ile-t11 is submultiplicative and vanishes at

+ there are positive constants a and b such that le-tQII < ae-bt for all

t > 0. Hence Bochner integral f0e tQdt exists and is equal to the inverse

operator to 0. Now we define
r"-L(Q) := u P(E): V(t>O) (pt  P(E)) i=e tQ V*1t }

(recall that for a measure v on E and a Borel measurable function f on E the

measure fv is defined by (fv)(B) = v(f' (B)) for all B E 8). Observe that

L(O) coincides with the Levy class L of all asymptotic distributions of

partial sums of independent random variables, if Q = Id is the identity operator

on E. In general, L(O) is a class of limit distributions of partial sums of

independent random variables normed by linear bounded operators on E, cf.

Urbanik (1978). Moreover L(O) is a closed subsemigroup of ID(E).

.......... ••o••,•oo. ................ -. °° , °  ..... .. . . . . ' ,, o .. .o °

• . , -• . .-. . • .. . .o, .. , •. . . . . . . . . . . .



2

Let DE[O,-) denote the set of all functions from [0,,) into E which are riaht

continuous and have left limits. The topology in DE[O,) is defined as in Lindwall

(1972) (cf. also Gikhman and Skorohod (1974)) and DE[O,) equipped with such a

Etopology is a separable metric space. For a DE[Ot)-valued random variable

X = {X(t):t>O} and the operator valued function t -* etA , where A is a bounded

linear operator on E, we define random inteoral as follows:

etAdx(t) e bAX(b) - eaAX(a) - abd(etA Mt)
, (a,b] J(ab]

ebAx(b) - eaAx(a) - (etAA)X(t)dt'

(a,b]

* 0 < a < b < , where the last stochastic integral is defined path-wise; cf.

Jurek (1982) and Jurek and Vervaat (1983).

Let Q be as above. Jurek (1982) has shown that v E L(O) if and only if

there exists a DELO,n)-valued random variable X with independent and stationary

increments, X(O) = 0 and E log (1 +IIX(1)11) < - such that

(1)= L( etQdX(t)),
f(0,-.)

*.] where L( ) denotes the distribution of a random variable . Here

toe dX(t) is defined as the limit a.s. (or in orobability) of

" f e tdx(t) as b -o, and this limit exists if and only if E loq (l+H1X(l)II)<-;' " (O,b]

-! cf. Jurek (1982). Let
. IDloci := ID10on1(E) : {. ID(E): J loa(l+jjxll)1,:dx) < - .

E

Since the distribution of X is determined by L(X(1)) = p loq' the eouation

"- (1) can be rewritten as

" (2) J ( := L( e-tQdX(t))"

#""% '. .. . . . . . . . . . -:1.. . . . "' '"''' ' '""-. . . ... ....... .... .. "'" " " ...... . ."'""..""'"."



3

The mapping J is an algebraic isomorphism between the semigroups ID100 and

L(Q), and its fixed-points are the operator-stable measures (stable measures

if q is the identity operator), cf. Jurek (1982). The aim of this paper is

to describe the topological properties of JQ and to find elements of L(Q)

which generate, by taking convolutions and weak limits, the entire class L(Q).

4.

..

. . . . . . . . .. 9** *. . . . . . . . . . .... -
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2. Main results.

Let vn e P(E) be such that fE log (1 + Ilxll)Jn(dx) < -, n EIN u {o}.

We say that V n log-converges to v0' and write wUn >loq Vo if un => po and

rlim fE log(l + I1xI~lin(dx) = fE log(l + jxj)v0 (dx). Using Billingsley

* (1968) Theorems 5.1 and 5.4 it is easy to deduce that vn =>log Po if and only

. if v1n =>Ioq o and lim sup f >log 0 + IIXH)in(dx} = 0.

Theorem 1. Let Xn , n E IN u {0} be DE[O,o)-valued random variables with

stationary independent increments, Xn(0) = 0 and L(X n (1)) E IDlog. Then, as

nn

:.: (0,oo (0,oo

if andI only if

L(Xn ) =>loq L(X0()).

In other words, JQ (n) => JQ(pO) for some (each) Q if and onlZv if un =>lo uO.

*Corollary 1. Under the assunptions of Theorem 1

S L(f(0,)e-tQdXn (t)) > L(f(0o)e-tQdx0(t)) if and onb, if L(Xn(l)) -- > L(X0(l))

*.:":: and the sequence {loq (1 + IlXn(1) Iln= 1 is uniforml', inte7rable.

- Since conditions for the weak convergence of infinitely divisible measures

are usually given in terms of the corresponding triplets we shall likewise

characterize the uniform integrability of {log (I + IJXn(1)11)}. Because in our

annrnach only certain properties of the logarithmic function are essential we

..........- ..............".-.-, ....-..".---."-.."..'..-..-....'.. - ."-"...""-.""."...."" -,." ' :,'':''.".:',>."-.: ',L : ."."." '., "" .

,"," '"." ""." .- " '°'' ;",'." "'', . " ". ,' ' '",-.
"  

-. °" '-'," " ". ,' % ' ' " -' " "*-.-"--°,'---',"
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shall, in fact, prove a more general theorem.

Let ¢ be the class of all continuous functions 4): E - (0,-) such that for

every x,y E E

6 (x + y) < cW(x)W(y),

where c = c(4) is a positive constant.

" Note that if w: E - [0,-) is a subadditive continuous function i.e.

,p(x + y) < d[i(x) + ip(y)] for all x,y E E and some d > 1, then O(x):= d+qp(x)

belongs to D with c = 1. The following are examples of such functions:

*r(x) = exp(\ IHxI), > 0, j(x) = HjxHjp, p > 0 and ip(x) = loo (I + Ilxi!).

Theorem 2. Let 4 ( D and Un = [an, Rn, M n] be infinitely divisibl-'

distributions on E. Asswne that {in } is relatively compact. Then

lim sup 4(x)hn(dx) = 0
t- n ){I x > t}

.' if and on Zy if

lim sup j t()Mn (dx) = 0.
t - n J{0(x > t}

Note that de Acosta and Gine (1979) (cf. also de Acosta (1980) studied the uniform

integrability of similar functions in the context of the General Central Limit

Theorem in Banach spaces. Our proof uses some of their arauments and results.

Corollary 2. Under assumptions of Theorem 1

L(I e-tfdxn(t)) L( e'tOdX(t))

if and only if

• r-.r I " .t i -
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L(X (1))= [an , Rn, Mn ] => [a,R,M] - L(X(l))

nnn n
and

lim sup log(l + jlxii) dMn(X) = 0."-i t-o n.:-. Mx11 > ti

In the case E = IR , Corollary 2 has been proven by Sato and Yamazato

(1984). Their proof uses, in an essential way, arguments of IRd and is

completely different from ours.

The class ID(E) of all infinitely divisible measures on E can be

described as the smallest closed subsemigroup of P(E) containing all symmetric

Gaussian measures and all shifted compound Poisson measures of the form

[x,O,J.(y)J, where, x,y E E and X > 0, cf. Araujo and Gine (1980). Using the

homeomorphism J: ID L(Q) we shall describe a set of generators of L(O).
Q log

Let S Q be the unit sphere in E with respect to the norm aiven by

xIlI:- f"ole-tQxlldt. For every a > 0 and z E SQ we define a measure

M on 6(E\{O}) by

M (F)= U 1F(SQz)s-1 ds, F c B(E\{Oj).
Do" 0

Since ! min {l,lxll}M (dx) <, M is a Levy measure onE, cf. Araujo and
Oc ,,z

Gine (1980), Theorem 6.3.(i). Let KQ consist of all generalized Poissonian

measures [x,O,XM 1z], x c E, a > 0, X > 0 and z c SQ and of all Gaussian

measures [0,R,0] such that QR + RQ* is a nonnegative operator.

Theorem 3. The class L(Q) is the smallest closed subsemigroup of ID(E)

.ontainn,7 the set K

In the case when E is a Hilbert space Jurek (1982) has obtained a slightly

different set of generators of L(Q) and his proof is completely different from ours.

.................... . - . .. .. .. .. .. .. . .
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3. Proof of Theorem 1.

The proof is preceded by some auxilliary lemmas and propositions, which

may be interesting themself.

Lemma 1. A family { } of real random variables is uniformly int-,:rable

if aw.'n only. if
oo

lim sup } P{R > ti =.
T-oac I T

. The necessity follows from the inequality

I % dP = TP{ UI > T} + JP{lI > t}dt > FP{E I > t) dt.
> TI T

The sufficiency we obtain as follows

TP { > 2TI < I [IEI - T] dP

{I > 2T}

(

I i dP- TP fit > T}

{l J > TI AC

= P{ 1 > t} dt

T

and hence

~jdP <2 IPQ > t}dt + P{I I > tI dt 0

{k ! I > 2TI T 2T

uniformly in aL as T -.

-, Proposition 2. (Skorohod (1957), Lemma 1.4). let Z(t), t r [a,b] bc 7r
stochastic process with independent increments and trajectories i? DEra,b].

" .. . .. . ... .. .. . . -.

,I II I I l~ l , t I " t ! .f . 1%" I ft I I . *ftftftftft ' " ftftftftf t * tft= ft
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Then for every r > 0

P{sup I Z(t) -Z(a)I > 2r} < cP{IIZ(b) - Z(a)fl > r},
a<t<b

where c = (1 - sup P{IIZ(t) - Z(b)II > r})"I is surposed to be positive.
a<t<b

Lemma 3. Let O: [0,o) - [0,-) be an increasing function such that fol, some

k > 0 and x>0 0 (2x) < k (x) for aZZ x > xO. Suppose Z(t), t E [a,b] is a

stoch7!ast-c rrocess with independent increments and paths in DE[a,b]. Furthei-

SPO re assurc

(i) {Z n(t) - Z n(b): a < t < b, n c IN } is bounded in prcbability;

(ii) {,(IlZn(b) - Zn(a)ID: n IN I is uniformZy inte,-rable.

Then Asup IZn M Zn(a)ll): n c INI is aZso unifonl-, inte-rable.
"- a<t<h

Proof. From (i) we have that P{I!Z (t)-Z (b)II > ri < 1 for all r>r
n n 2-0

S nl n IN and t E [a,b]. By Proposition 2 we get

Pfsup IIZn(t) - Z (a)II > 2r} < 2P {lIZ (b) - Zn(a)II > r}
a<t<b

for all r > r0 and n E N . Therefore for T > L(2(roVXo)) we obtain

T P{(sup lIZn(t) - Zn(a)UI) > u~du
T a<t<b

P{sup IIZn(t) - Zn (a)lI > ,'l(u)} du

T a<t<b

<2 P fi (b)- Zn(a)II > (W du

T

r. .
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-2 ITJP(211Z n(b) Z Zn(a)II) > u} du

< (P{P (2Zn(b) - Zn(a)Jl) > u} 1 I du

T

= 2k f P{W(IlZ (b) - Zn(a)Jl) > ul du.n" n
-l

Tk

This together with Lemma 1 completes the proof.

Remark. Both Proposition 2 and Lemma 3 hold true if one replaces the norm

I "I by a measurable extended-valued seminorm.

Lemma 4. Let X , n 6 IN u {O} be DE[a,b]-valued random variables su h7 thatn E

L(Xn L(X0) in DE[a,b] and let A be a linear bounded operator on E. Then

!L( ( etAdXn(t)) -> L( J etAdX 0 (t)).
.. (a ,b] (a ,b]

[+woof. Since the mapping

DELa,b]3 y - [ etAdy(t) := etAy(t) t=b AetAy(t)dt r F
E (a,b] t a (a,bl

is continuous (cf. Billinqsley (1968), p. 121), the Continuous 'apping Theorem

concludes the proof (cf. Billingsley (1968), Thm. 5.1).

Trco-'n.1 Theore7 1. Put

Yt) - (s) and

• i ) (Olt]

S( -Sq
Y (,) e sdX(s), n IN {0}.
n

(O,c)

". -,. .--. .'...,-.. .".. .".". .
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By definition, Y, n E I u {0} are DE[Oo)-valued random variables with inde-

pendent increments. Furthermore we have

Yn (+Y) - Yn(t) = e-QdXn(s) = etQYn(O), O<t<;
i (t,oo)

ILn*n n eSd n deJnl

Yn(j + 1) - Yn(j) : e-jq  e dXn(s + j) = e Y ) j=0,,...,

(0,1]

and for every n

( d
eSQdX (s+j) = Y (1) are independent,

( (0,1]

d
. j e {O} u IN, where "=" means "equal in distribution". Also we have

llYn(1)l1 = iIe'QXn(1) + f Qe-tQXn(t)dtI < C sup IXn(t)1,
(0,1] O<t<l

'" where C 2eIIQ I.

The necessity. We have that L(Xn(1)) -> L(X0(1)) and {loq (I + llXn(1)I)

.. n E IN } is uniformly integrable. Using Lemma 3 we obtain that for every r > I

* and k > 0

(3) flogr ( + k sup liX (t)ll) n IN} is uniformly integrable.

r 0<t<l n

.-." Further, L(X (1)) .-> L(X0(1)) implies that L(Xn> L(XO ) in DE[0,t] for every t>O

* (cf. Gikhman and Skorohod (1974), Theorem VI. 5.5) and Lemma 4 yields

L(Yn(t)) -> L(Y0(t)) for every fixed t c [0,oo) as n M oo. Moreover,

L(Yo(t)) -> L(YO(o)) as t o. Therefore, to prove that L(Yn("')) -> L(Y0(o)),

as n ', it is enough to show that for each c > 0

(A) lim lim sup P{lIYn(o) - Y (S)Il > = 0,
% S-'w n-'

L
V" - ,

"- ' ,''Ww'"ht l ' l w-~kWmJ'mkI h' 'lmmtw mm'll I " " -.. , .. . . . . , .-.. -. . . .- . - -*-
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cf. Billingsley (1968), Theorem 4.2.

Since the function t - Ile- toj is submiltiplicative which vanishes at +c

there are positive constants a and b such that

to -bt -b k
Ile- 11 < ae-  for every t > 0. Let q = e < p < 1 and ak := (l-p)p

k = 0,1,2,.... For a given £ > 0 and m E I such that a- E(l-p)p -m > 1 we

obtain

P{HIYn(-) - Yn(m)II > E) = P{Hj. Z[Yn(J+ l) - Yn(J)]I' > E}
j=m

< P{ aa3Ho . > I ca. } < P{IlYn(1)11> a'-i a. }a
- j=m j=m J-m j=m

< X P{C sup IHX (t)JI > (p/q)J} < I P{lOQp/q(l + C sup lIX (t)II) > Pi=m O<t<l n -.jm pq ~~ n

< E[log p/q (l + C sup IllXn(t)11) l l g 0 +C su I ( 11 > m *
- Ogpq~t+ 0 l H~~~I {logp/,q(l + C sup HIXn(t)HI) > m}

O<t<l

Hence and from (3) we get

lim sup P{jYn - Yn(m) > E} = 0
m- n

which implies (4). The proof of the necessity is complete.

The sufficiency. Note that

(5) Y n(-) :Yn(t) + [Yn(-) -Yn(t)],

d

Yn(c) - Vn(t) is independent of Y (t) and Yn(c) - Vnt) = e-tQY (o). Since by
n n n n n n

our assumption L(Yn(c)) > L(Y0oc)) we obtain that the following sets are

conditionally compact

- . . . -. . . . . . . . . . . .. . ...
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{L(Y n( - Yn(t)): 0 < t < ,, n I I}

and

{L(Y n(t)): 0 < t <00 n IN
!;:n - _

Using (5) and the fact that the characteristic functionals of infinitely

- divisible distributions are not vanishing, we obtain for every sequence

ftnc LO,-] such that tn t asn

[L'(Yn (tn)) => L(Y0(to)) and
" (6)

[L(Yn (0) - Yn(tn)) > L(Yo(°) - Yo(to))

Since the conditional compactness of distributions implies the boundedness in

probability of the corresponding r.v.'s we can find r0 > I such that

"" (7) sup sup P{HIY () - Yn(t)l > r} < 1 for all r > rO.
nI O<t< nn2

* By Proposition 2 we get for any a > 0 and n E IN

P{sup IlYn t - Y (a)II > 2r} < 2P{IIY (00) _ n(a)I I > r
a<t<0 n - n •r

-. Hence

2P{HjYn() - Yn(k)lI > r} > P{sup liYn(m) - Yn(k)ll > 2r
k<m<o

m-1
= P{sup 11 1 .Yn(j+ 1) - Yn (J)](I > 2r} >

k<m j=k

> P{sup liY (m+l) - Y (m)II > 4r}
k<m n n

0O

1 - TI [1-P {11Y n(+1) - Yn (j)I > 4r]
j=k

_ exp ( ) Yn(j)II > 4r)].

• , j ... i.**'-.~.*. *.K *-k* .

*. ******t. t * .*o. . ... ** *. * * * *
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Therefore

i P{TeI Y (1)11 > 4r} < -log (1 - dk),~j=k-

where dk = dk(r) := 2 sup P{IHY (c) . Y (k)lj > r} and r > r0.

Note now that j(eQ(j > 1. Indeed, this follows from the inequality

1 < j eQ Ijm lie-mQiI and the assumption lim Hle'mQ1 = 0.

Thus

Pflog+IYn(1)11>log 4r + j log Hle°H}
j=k
oo O

I P{Yn(1)!! > 4r leO1H J) < ' P{jjeJ°Y n(1)l j > 4r) < -log (l-dk).
j=k -j=k -

- By (6) for any fixed r > 0 lim dk = 0. Using Lemma 1 we net that

6 {loq (1 + 11Yn(1)11): n E IN} is uniformly integrable. Since for 0 < t < 1

-o d
(8) Yn(1) - Y n(t) e dXn(s) e n

(t,l]

and (6) we obtain by Lemma 3 that

(9) {log (I + sup 1iY (t)1j): n E IN} is uniformly integrable.
n" O<t<l n

We have

(10) e-OXn(1) : I erQdYn(r) eQyn(l)- OerOYn r)dr.

-Ol] 0

Therefore liXn ( 1)1l < C2 sup 11Yn(t)J I, where C, := eIIQII(2e1IOl- l) and (9
n 2 O<t<l n

S"implies that floo (1 + llX (l)Il):n~lN1 is uniformly integrable.
n

To complete the proof of the sufficiency it is enough to show that

L(Xn())--> L(Xo(1)). In view of (10) and Lemma 4 it is sufficient to prove

' * *- o" . - -- . .° .," ° ,° -% , * -
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that L(Yn) => L(Yo) in DE[0 ,11.  Since Yn n E IN, have independent increments

and for 0 < s < t < I

Yn(t) - Yn(s) = j erO dXn(r) = e'SQYn(t " s),
| (s,t]

(6) qives the weak convergence of all finite dimensional distributions of

stochastic processes {Yn(t): t C [0,1]}ne . Moreover for every e > 0

lim lim sup sup P{IIYn(t) - Yn(S)II > E}
h-*O n- It-sf<h

< lim lim sup sup P{IlY > C-1 C} = -,
h-0 n-- u<h 3

where C3 := max IIe-1. By Gikhman and Skorohod (1974) Theorem VI.5.5.
O<t<l

L(Yn) => L(Y) in DELO,l], which completes the proof of Theorem 1..Jn

*J .i*°* *a
'  

. . . . . . . . . . . . . . . . . . . . .

a . . . . . . . . . . .
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4. Proof of Theorem 2.

We begin this section with some auxilliary lemmas needed in the proof of

Theorem 2.

Let T be the class of all continuous non-decreasing functions ,P:[0,x) [0,oo)

with q(0) > 0, lim 11(t) = - and such that ip(2t) < ao(t) for all t > 0 and
t-*W

some a = a(?p).

The following is a stronger version of the well-known criterium of the

uniform integrability, cf. Meyer (1966), T22. We assume additionally

that the constructed function s satisfies the so-called A2 -condition.

Lemma 5. Let {f C a I be a fanily of measurable functions defined on

a measurable space (S,S) and let {v :O E I} be a family of measures on S

such that sup V (S) < _. If

(i) lim sup i fa Idva = 0
t- oCx I JIf Lt} cxr

then there exists a function p E T such that

,." (ii) j ( ° jf l)dv < .

CXEI S

* conversely, if (ii) is satisfied for some non-decreasing continuous function

"" i: [0,-) - [0,-) with lim t , then (i) holds.

Proef. Following the proof of T22 in Meyer (1966) (with some obvious

modifications) we show that (i) holds if and only if there exists a non-decreasin

continuous function p: [0,-') -[ 0,co) with Ilim 'Pt such thatt

sup f (p°If(I)dvU < o. Put 0 (t) = $(t) + 1. Then sup f (qpoIfI)d , < o.
a(l S cI f

S S

r% . - ,.* -,',- .,-,- , ,. , . .. - *.., .. . . , . . ., . . .. .. , .. . . . . .
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To complete the proof it is enough to show that there exists '2 c T such that

2 <' qjI"

Choose c > 2 such that c > sup (p1 (t)/ipl(t/2)) and define
O<t<l

2 ,2(t) :=,(t) for t E [0,1]

and, by induction, put

'2(t) :=min {l(t), cq2(t/2)}

for t E [2n-l, 2n], n = 1,2,... .. In other words

)P2(t) = min {l(t), cWl(t/2),..., cnP(t/2n),

for t E [2n- 2n], n = 1,2,...

Clearly, p2 is continuous, non-decreasing, 2(0) > 0 and 2(2t) < c*2(t). It

-  remains to show that im 2(t)/t = . To this end observe that for every n > 1
.t - 4 : I

n ex st uc n Jnn n
(2 n )

" there exists 0< jn < n such that P 2(2n) c i( 2  Thus for t E [2n2n+l.

we have
ip2(t) _>2W( 2n) - 1 c )n-in( l(2n )) -

2 n

as t , which completes the proof.

*Lemma 6. If e and IP E 'Y, then ip * E D

Proof. Since (w o )(x + y) = w(¢(x + y)) < q(c (x) (y)) it is enouah to

prove the submultiplicity of 0 with a constant. The condition *(2t) < alp(t)

for every t > 0 yields ip(st) < as qp(t), where q := log 2a. Hence

4)(1) = O I(s s) < as'%q(s) and consequently aip(s)/t(1) > sq for every s > 0.

Finally we get p(st) < as q(t) < (a2(s)(t), which completes the proof.

,_ • _ .. . . . ... o . . * . . ~ * ".o °* . .* ° . . - . . ° * . . " * . . " . . .° _ ° ° • . •

~~~~~ . . . . . . .. . . .. 
. .

° ° , . , . o . . . . . . . . . . .

*.,I - - ' * . ' ". -' .** -* '- .''.. - . -. - '*" '''- .- .*.' ' '-.- .-.- , L .. ,.. 2 , , ''? '",,'' '''' .; ' : ' ' ' '. -,- .; ' . , ,,.
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It is well-known that any infinitely divisible distribution with Levy

measure concentrated on some ball has all exponential moments finite. The

* following is a generalization of this result to sequences of infinitely

divisible distributions.

Lemma 7. Let a sequence 1n = [a 'R 'M 1 n E IN, be conditionally compactn n n n

and for some r > 0 M ({llxil > r}) = 0 for all n E N . Then for every, X 0n

sup J exp (Xllxix )un (dx) <
n E

Proof. Let yn : [OR n0] and vn := [O'O'Mn 1. Then P n = 6(a n);yn*vn and

the sequences {6(a): n c IN}, {yn: n E I} and {vn: n IN ) are conditionallyn n

compact; cf. Araujo and Gine (1980), Theorem 1.4.9 and Corollary 3.4.6. Clearly

sup Ilanil < -. Also sup exp(Elixll 2)y (dx) < - for some c > 0 (cf. e.a.
n n JEn

". (

Chevet (1983), Theorem l(1)). Hence for every X > 0 sup i exp(Xllxll)yn(dx)<-.
n )

E

It remains to show that for every X > 0

(11) sup exp (;xIixli)vn(dx) <
'w°'.;in f

E

Let us fix X > 0 and for each vn construct an infinitesimal trianular array of

random variables uniformly bounded by 2r which row sums weakly converoe to vn

cf. the proof of Corollary 3.3 in de Acosta (1982). Now from the sequence of

triangular arrays choose another one, say {Znj: I < j < k n , n > 1), such that

4 E exp(XIlSniI) - J exp ()!!xII)v n (dx) - C

E k
<1 n

as n - and d(L(Sn) , ) <, where S = ~lZ . and d denotes the Prokhorov
n n n n

* - . * .." lilk-
I L * . ." * € _,'-'.,* ' -. ' -,'.' _ z';-'....'-'-.. "."....."..."."€-.-.".".,.-.,..'.' " . -. '..'''
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* metric. Therefore {L(S n ) n E IN} is conditionally compact and Theorem 2.1 in

de Acosta and Gine (1979) yields

sup E exp (XIIS 1I) <00.
n

This implies (11) and completes the proof.

Proof of Theorem 2. Let M2(B) M(Bnjjjxjj < U) and M2(B) M(Bn{IlxII > 1})n n

for B E B(E\ {O). Define also V 1  [anRnM I] and pn := [OOM ] n E N.

. Of course P n * 2 and both {111} and {p } are conditionally compact; cf.

" Araujo and Gine (1980), Theorem 1.4.9 and Corollary 3.4.6. Further, note that

for every function q E 0 there are positive constants a and B such that

- (12) 4(X) < aIeIxII, for all X E E.

The sufficiency. Assume that

lim sup I 0(t)p n (dx) = 0.
*t -  n {(x)>t}

By Lemma 5 there exists ip E Y such that sup fE(1 o)(X)n (dx) < . By Lemma 6

E n
n

,-° . x := , o E 0 and by (12) X(x) < aeB'Ix(I for all x E E and some a,a > 0. Since

X D we have X(y) = X(x + y - x) < cx(x + y)X(-x) for every x,y E and some

c > O. Thus

e-BlIxIIX(y) <tcx(x + y) for all x,y E E.

- Therefore,

(13) e-6IIXIlvu(dx) x(yhu(dY) < uc J(Z)In(dz)
E E E

J , - , . . . . , - . . . . , , , . - , . -' ' : .- - - - ' " . .- . . .- . - . . . . . . . . . . .- , , , ..
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* and the quantity on the riqht-hand side is uniformly bounded for all n N.

By Lemma 7 sup fEe H Hxl (dx) := K < -. This together with the inequality
E nn

1 : exp ( ilxll - 1IxII)Iln(dx) < ( e~1lXfl l(dx))1/2(j e
-' lx l jn(dX )

E E E

implies that inf f eWxH vl(dx) > K1 > 0. By (13) we cet sup fE( X)I (dx)<-.

nEIN n n n

* So, finally we obtair

> sup X(x) 2(dx) = sup [e n (k!)-' x(x)(M ) (dx)]-nc IN "E IN k:O

E E
-M 2(E)

> sup [e ( (x(O) + X(x)Mn (dx))].
liEIN E

2
. Since {Mnl is conditionally compact, cf. Araujo and Gine (1980), Theorem 3.4.5,

sup M2 (E) < Therefore sup fEX(X)Mn(dX) < -. By Lemma 5 we get

~" M2

lim sup f{,(x)>t} t(x)m n(dx) = 0. Since {b(x') > t} c {llxHj > 1) for sufficiently

t-'- nlN

large t > 0 (cf. (12)) we obtain lim sup f{(xl>t)> (xr" n(dx) 0 0, which ends
t-* nEIN

the proof of the sufficiency.

The necessity. Since we have that lim sup f x)M2(dx) :0 and
t-' nc IN

"2 n  
2E

sup M (E) < - Lemma 5 shows that for some function wYE sup f (dx)<-,

'" IN nEIN

where x : o 
°  By Lemma 6 (x + y) < cY(x)(y) for all x,y E E and some

c > 0. Similarly as in de Acosta (1980), Corollary 3.4 we obtain

. . . . . ..* *. . . -. .- . . . • . , , - . . . .., , - , - , ,- . . * f.t..• - - , - . . - ,, , . , ,
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!.'[ e2 ( E) r C()O~X_ - 2.

E -k(x)k(dx) (k) x(X)(n (dx)

E k= E

< x(O) + I (k!)-1 1 l(x + x(x)M)(dX))k

k=l E

< x(O) + c [exp(c (X)M - l].

E

2
Hence sup fEx X)Jn(dx) < -. Using (12) and Lemma 7 we obtain

n

sup J X(X)n(dX) < c ot sup Jeailil(dx) sup 2 (dx) <
nEIN E n nEIN E nEN E

which by Lemma 5 gives that lim sup f {(x)>t} (t)un(dX)=O and completes the

t- nElN

proof of Theorem 2.

r", .
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5. Proof of Theorem 3.

In the proof we shall use the following lemma:

Lemma 8. For every [O,O,M] r ID log there exists a sequence
k

M n a n6(x n), n E N where a n > 0 and X nj E E, such that [O,O,Mn -lo [AM].

Proof. The proof of Lemma 8 is divided in three steps.

!1
Step 1. Let [O,O,MJ Eg and M(B): M(Bn{iIxiI> 1}, BB(F), •EIN.l0og Mn( n

Then Mn are finite measures such that [O,O,M ) -> oO,,M].

Proof. Theorem 3.4.7 in Araujo and Gine (1980) gives that [O,,M n ] ->

[O,O,M]. Since sup fx>tlog(l + Iixij)dMn(X)< fi xi>tlog(l + xfj)d1(x)-*O
n

as t - , Theorem 2 completes the proof.

* Step 2. Let M be a finite measure on E and [O,O,M] E IDloq Then there

are Mn  = c .6(X n), where a . > 0, T a . < - and x . E E, such that

[0,0Mn] > log[O,0M].

Proof. Let for every n {A n: j E IN } be a partition of E onto non-empty

Borel sets with diam(A n) < n. Choose x c A and put anj = M(A n). Then
nj -n n~j n~j nij nij

Mn  > M and since M(E) <, [O,O,Mn] =- [O,O,M]. Furthermore for every s>l

we have

log(l + IlxlI)M (dx) I loq(l + lix Il)M(dx)
f I(1xI(>s} n :j Xnj (1>s!) n

'"tf< I f A l og(l + JH X-Xnjll) + loo (1 + Ilxlj)]M(dx)
< ({j:Ilxn .j>s+

S<(boo 2)M({jllxf f>s-l f) + floa(l + lxl I)M(dx).
- {llxi Ks-li

• • - • , , *.• .. . .• . . .. • , .. .,. -. . .. . . . . • . . . .. o o •... . .* , . . , .-.-. ... . .* , . . .- .. * . . ,. -. - - .-- * - . ....
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Therefore Theorem 2 completes the proof of Step 2.Combining Steps 1 and 2 and

the following obvious fact given below as Step 3 the proof of Lemma 8 follows.

00

"- Step 3. Suppose M = Z aj6(x), with xj E E, a. > 0 and Z a. < . If'* j=1l j

n
[OO,M] c IDlog then [0,0, E ai6(xi)] =>l,,[O,O,M] as n •

j=l

. Proof of Theorem 3. Let i = [a,R,M] E ID0log Then J0 (1j) (.,aoo,Roo,Mo],where

(14) a= Q-la + J e-tQ x [IB(e-tQx)-IB(x)]M(dx)dt,

0 E\{O}

(15) R= FetQRe-tQ*dt

(16) Moo(F) = JMtetOF)dt, F B(E\{O}),

and B = Ilixi! < 1); cf. Jurek (1982). From (15) we aet that QR.O+RMQ* = P.

Hence the operator QRO + R.Q* is non-negative and symmetric, provided Roo is

the covariance operator of a Gaussian measure from L(Q). Conversely, if R' is

a Gaussian covariance operator such that QR' + R'Q* is non-negative, then
.. = (QR' + R'Q*)e and hence R' > eSQR'sQ* for all s > 0.

Thus R' is the covariance operator of a Gaussian measure from L(Q).

To complete the proof of Theorem 3, in view of Lemma 8 and Theorem 1, it

is enough to show that for every a E E\{O}

(17) (6(a))= M tz

for some 1 > 0 and z S Q (note that (cM)oo = c 00. It is easy to see that

,.* the mapping o:S x R + -* E\{O} given by p(u,t) tQu is a homeomorphism.
--

P d

• "" •,o • m ~~~. .. ...... . .... ° ,... .. . ., .. . "- ,-.. .-.. ,, . , , ... - .. *,* w=,5 %-. - .- *,, . - .. . 5 -
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Hence for every a E E\fO} there exist ,. R+ and z • SQ such that a=,,qz.

Let F = p(AxB), where AcS(SQ) and B c 6(I+). By (16) we obtain

(6(a)))(F) = \(Qz)sQu: u c A, s c e4BLdt

0

IA(z) 6(z)(A) fB (S)s- ds

{t:e aCB} 0

= JA(x)IB(s)s -lds6(z)(dx)

SQ 0

S.f lF(sqx)s-ds6(z)(dx)

= I (sqz)s-lds.

. This proves (6(a)) (F)= M (F) for F = P(A x B). Since P is a homeomorphism
O rX,Z

" this equality extends to all Borel sets F c EI\{O}, which proves (17) and

completes the proof.

.
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